Synthesis and Photochromic Property of *cis*-Azobenzene Complex with a Binuclear η⁶-Areneruthenium(II) Unit

Yoshiharu Miyaki, Takafumi Onishi, and Hideo Kurosawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871

(Received September 5, 2000; CL-000830)

A *cis*-azobenzene complex with a binuclear ruthenium(II) unit bridged by alkoxo ligands which are tethered to η^6 -arene donors (**4**) was synthesized from corresponding binuclear acetonitrile complex (**3**) and *trans*-azobenzene irradiated by UV light (300 nm < λ < 400 nm). On irradiation with visible light (λ > 510 nm) in acetonitrile, **4** mostly dissociated to *trans*-azobenzene and **3** with the photostationary ratio **3**/**4** = 92/8.

A limited number of organotransition metal complexes having azobenzene ligand are known¹ where the thermodynamically less stable *cis*-azobenzene is incorporated in binuclear metal units. We report here synthesis, structure, and photochromic behavior of a binuclear ruthenium(II) *cis*-azobenzene complex. In this system the complexation of azobenzene with the binuclear ruthenium unit can be controlled by the irradiation wavelength.

An arene ruthenium(II) dimer complex having side arm alcohol [Ru{ η^6 -C₆H₅(CH₂)₃OH}Cl₂]₂ (1)² was treated with 2-aminoethanol (2 equiv) and NaBF₄ in acetonitrile to give a new binuclear complex [Ru₂{ η^6 : η^1 : μ -C₆H₅(CH₂)₃O}₂(μ -Cl)]BF₄ (**2a**)³ in high yield. The molecular structure of [Ru₂{ η^6 : η^1 : μ -C₆H₅(CH₂)₃O}₂(μ -Cl)]PF₆ (**2b**) prepared by anion exchange from BF₄ to PF₆ is shown in Figure 1a.⁴ Abstraction of chloride ligand of **2a** in acetonitrile afforded binuclear acetonitrile complex [Ru{ η^6 : η^1 : μ -C₆H₅(CH₂)₃O}(CH₃CN)]₂(BF₄)₂ (3)⁵ (Scheme 1) whose structure is shown in Figure 1b.⁴ Binuclear ruthenium complexes of the type **2** with unsubstituted η^6 -benzene ligand have been known,⁶ but complexes of the type **3** are less common.

In both CH₂Cl₂ and CH₃CN under dark **3** does not react with *trans*-azobenzene at all. However, when an orange acetonitrile solution of **3** and *trans*-azobenzene was irradiated by a high-pressure Hg lamp (using a UV-D36A filter, $300 < \lambda < 400$ nm) for 1 h, a purple solution emerged of which ¹H-NMR spectra indicated quantitative formation of *cis*-azobenzene complex

Figure 1. ORTEP drawing of 2b, 3, and 4 with ellipsoids at 50% propability levels. Counter anions were omitted for clarity.

 $[\operatorname{Ru}_2\{\eta^6:\eta^1:\mu-C_6H_5(CH_2)_3O\}_2(PhN=NPh)](BF_4)_2$ (4)⁷ (Scheme 2). The solid state structure of 4 is shown in Figure 1c.⁴ The N=N bond distance of 4 is 1.28(2) Å comparable to common N=N bond distances. It should be noted that a similar irradiation (300 < λ < 400 nm) of *trans*-azobenzene alone in the same solvent afforded a photostationary mixture of *cis* (50%) and *trans* (50%) azobenzene. Enhancement of photostationary distribution of the *cis* form of azobenzenes owing to the more favorable metal complexation in this form was reported before.⁸

A UV–vis spectrum of **3** and **4** is shown in Figure 2, which indicated $\lambda_{max} = 530 \text{ nm} (\varepsilon = 3300 \text{ M}^{-1} \text{ cm}^{-1})$ with respect to **4**. On irradiation with a tungsten lamp (using an O-54 filter, $\lambda > 510 \text{ nm}$) of a CD₃CN solution of **4** for 90 min, the solution color turned from purple to red-orange. ¹H-NMR measurements showed the formation of **3** and *trans*-azobenzene in a ratio of **4** : **3** : *trans*-azobenzene = 8 : 92 : 92.⁹ Thus, the interconversion between **3** and **4** can be controlled by the irradiation

Figure 2. UV-vis spectra of 3 and 4 in CH_3CN at 25 °C (10⁻⁴ M).

wavelength. Further studies are in progress to synthesize other complexes related to **4** and reveal more details of their photochemistry.

References and Notes

- S. Gambarotta, C. Floriani, A. Chiesi-Villa, and C. Guastini, J. Am. Chem. Soc., 105, 7295 (1983); J. F. Corrigan, S. Doherty, N. J. Taylor, and A. J. Carty, J. Chem. Soc., Chem. Commun., 1991, 1640; E. A. Vasyutinskaya, I. L. Eremenko, A. A. Pasynskii, S. E. Nefedov, A. I. Yanovskii, and Y. T. Struchkov, Zh. Neorg. Khim., 36, 1707 (1991); B. I. Kolobkov, S. E, Nefedov, I. L. Eremenko, A. A. Pasynskii, A. I. Yanovskii, and Y. T. Struchkov, Zh. Neorg. Khim., 37, 328 (1992); I. L. Eremenko, A. A. Pasynskii, S. E. Nefedov, A. S. Katugin, B. I. Kolobkov, A. D. Shaposhnikova, R. A. Stadnichenko, A. I. Yanovskii, and Y. T. Struchkov, Zh. Neorg. Khim., 37, 574 (1992); A. D. Ryabov, L. G. Kuz'mina, N. V. Dvortsova, D. J. Stufkens, and R. van Eldik, Inorg. Chem., 32, 3166 (1993); B. Hansert and H. Vahrenkamp, J. Organomet. Chem., 459, 265 (1993); A. A. Pasynskii, Y. V. Torubayev, A. V. Drukovsky, I. L. Eremenko, D. Veghinin, S. E, Nefedov, A. I. Yanovskii, and Y. T. Struchkov, Zh. Neorg. Khim., 42, 957 (1997).
- 2 T. Onishi, Y. Miyaki, H. Asano, and H. Kurosawa, *Chem. Lett.*, **1999**, 809; Y. Miyaki, T. Onishi, and H. Kurosawa, *Inorg. Chim. Acta*, **300**, 369 (2000).
- 3 To a suspension of **1** (400 mg, 0.65 mmol) in CH₃CN (100 mL) was added 2-aminoethanol (79 mg, 1.3 mmol) and NaBF₄ (143 mg, 1.3 mmol) in the presence of Molecular Sieves 4A. After stirred for 48 h at room temperature, the mixture was filtered and the filtrate was evaporated. The residue was dissolved in CH₂Cl₂ and the suspension was filtered. The orange filtrate was evaporated to give 308 mg of orange powders of **2a** (0.52 mmol, 80%). ¹H-NMR (CD₃CN, 270 MHz): δ 2.29 (m, 4H), 2.36 (m, 2H), 2.66 (m, 2H), 4.04 (m, 2H), 4.32 (m, 2H), 5.09 (d, *J* = 5.9 Hz, 2H), 5.31 (d, *J* = 5.9 Hz, 2H), 5.34 (t, *J* = 6.1 Hz, 2H), 5.61

(t, J = 5.9 Hz, 2H), 5.70 (t, J = 5.5 Hz, 2H). Anal. Calcd for $C_{18}H_{22}BClF_4O_2Ru_2$: C, 36.35; H, 3.73%. Found: C, 36.49; H, 3.53%.

- Crystal data for **2b**: $C_{18}H_{22}ClF_6O_2PRu_2$, MW = 652.93, monoclinic, space group $P2_1/c$ (No. 14), a = 10.092(3) Å, b = 17.182(3) Å, c = 12.522(2) Å, $\beta = 106.37(2)^{\circ}$, V =2083.3(7) Å³, Z = 4, F(000) = 1280, $D_c = 2.082$ g/cm³, μ (Mo K α) = 17.21 cm⁻¹, 271 variables refined with 4085 reflections with $I > 3\sigma(I)$ to R = 0.046, $R_w = 0.055$. Crystal data for 3: $C_{22}H_{28}B_2F_8N_2O_2Ru_2$, MW = 769.27, triclinic, space group $P\bar{1}$ (No. 2), a = 10.073(1) Å, b = 10.633(1) Å, c = 9.000(1) Å, $\alpha = 113.446(4)^{\circ}$, $\beta = 106.37(2)^{\circ}$, $\gamma =$ $82.047(3)^{\circ}$, V = 803.5(2) Å³, Z = 1, F(000) = 382, $D_c =$ 1.590 g/cm³, μ (Mo K α) = 10.11 cm⁻¹, 199 variables refined with 3393 reflections with $I > 3\sigma(I)$ to R = 0.074, $R_w =$ 0.080. Crystal data for 4: $C_{30}H_{32}B_2F_8N_2O_2Ru_2\cdot CH_2Cl_2$, MW = 913.28, orthorhombic, space group $P2_12_12_1$ (No. 19), a = 18.670(1) Å, b = 18.718(1) Å, c = 9.8025(5) Å, V $= 3425.6(4) \text{ Å}^3$, Z = 4, F(000) = 1816, $D_c = 1.771 \text{ g/cm}^3$, μ (Mo K α) = 11.14 cm⁻¹, 443 variables refined with 2589 reflections with $I > 3\sigma(I)$ to R = 0.055, $R_w = 0.069$.
- 5 To a solution of **2a** (220 mg, 0.37 mmol) in CH₃CN (35 mL) was added AgBF₄ (74 mg, 0.38 mmol) dissolved in CH₃CN (5 mL). After stirred for 2 h at room temperature, the reaction mixture was filtered and the filtrate was evaporated. The residue was recrystallized with CH₃CN and ether to give 189 mg (0.22 mmol, 72%) of orange crystalline product **3**. **3** was hardly soluble in common organic solvents except for acetonitrile. ¹H-NMR (CD₃CN, 270 MHz): δ 1.97 (m, 4H), 2.36 (m, 4H), 3.72 (m, 4H), 5.15 (d, J = 6.5 Hz, 4H), 5.43 (t, J = 5.8 Hz, 2H), 5.79 (t, J = 6.1 Hz, 4H). Anal. Calcd for C₂₂H₂₈B₂F₈N₂O₂Ru₂·H₂O: C, 35.41; H, 4.05; N, 3.75%. Found: C, 35.45; H, 3.71; N, 3.87%.
- 6 H. L. Bozec, D. Touchard, and P. H. Dixneuf, *Adv. Organomet. Chem.*, **29**, 163 (1987).
- 7 **3** (96 mg, 0.13 mmol) and *trans*-azobenzene (24 mg, 0.13 mmol) were dissolved in 10 mL of CH₃CN, and the solution was irradiated through a TOSHIBA UV-D36A filter (300 < λ < 400 nm) by a high-pressure Hg lamp for 1 h. The solvent was removed and the residue was recrystallized with CH₂Cl₂ and hexane to give 108 mg of purple powders of **4** (0.13 mmol, 99%). ¹H-NMR (CD₃CN, 270 MHz): δ 1.97 (m, 2H), 2.35 (m, 2H), 2.56 (m, 4H), 4.14 (m, 2H), 4.28 (m, 2H), 4.84 (t, *J* = 5.8 Hz, 2H), 5.10 (d, *J* = 6.5 Hz, 2H), 5.49 (t, *J* = 5.7 Hz, 2H), 6.03 (d, *J* = 5.7 Hz, 2H), 6.22 (t, *J* = 5.8 Hz, 2H). 6.99 (m, 2H), 7.30–7.50 (m, 8H). Anal. Calcd for C₃₀H₃₂B₂F₈N₂O₂Ru₂·CH₂Cl₂: C, 40.77; H, 3.75; N, 3.07%. Found: C, 40.48; H, 3.77; N, 2.90%.
- S. Shinkai, T. Ogawa, Y. Kusano, O. Manabe, K. Kikukawa, T. Goto, and T. Matsuda, J. Am. Chem. Soc., 104, 1960 (1982); S. Shinkai, K. Shigematsu, M. Sato, and O. Manabe, J. Chem. Soc., Perkin Trans. 1, 1982, 2735.
- 9 Irradiation with the light ($\lambda > 510$ nm) of a CH₃CN solution of free azobenzene (*cis* : *trans* = 50 : 50) for 80 min afforded a photostationary mixture (*cis* : *trans* = 22 : 78).